Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 13.423
Filtrar
1.
J Colloid Interface Sci ; 665: 1007-1016, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38579384

RESUMO

To cope with the demand of more complex and variable applications, it is urgent to develop dual-mode triggered, breathable, and shape-memory wearable heaters for all-weather personal thermal management of composite phase change materials (PCMs). Herein, after high-temperature carbonization of ZnCo-MOF (metal-organic framework) nanosheet array grown in situ on flexible and breathable carbon cloth (CC) and subsequent encapsulation of polyethylene glycol (PEG), the as-prepared PEG/CC@Co/CNT (carbon nanotube) composite PCMs exhibited good breathability, mechanical strength (tensile strength of 9.15 MPa), thermal energy storage density (114.19 J/g), and shape memory due to the synergy of flexible CC skeleton and rigid PEG. More importantly, composite PCMs possessed excellent solar-thermal (93.7 %, 100 mW/cm2) and electro-thermals (94.5 %, 2.0 V) conversion and storage capacity, benefiting from the conjugation effect of high graphitized carbon/carbon heterostructure with fast electron/photon/phonon transmission and the localized surface plasmon resonance effect of Co nanoparticles. Therefore, the integration of solar heating and Joule heating into breathable composite PCMs can be accurately used for next-generation all-weather, all-season, dual-mode triggered personal thermal management, including indoor/outdoor, daytime/night, rainy/cloudy and other complex and changeable scenarios.

2.
J Colloid Interface Sci ; 665: 1017-1028, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38579385

RESUMO

Lithium-selenium batteries have emerged as a promising alternative to lithium-sulfur batteries due to their high electrical conductivity and comparable volume capacity. However, challenges such as the shuttle effect of polyselenides and high-volume fluctuations hinder their practical implementation. To address these issues, we propose synthesizing Fe-CNT/TiO2 catalyst through high-temperature sintering of an amalgamated nanoarchitecture of carbon nanotubes decorated metal-organic framework (MOF) and MXene, optimized for efficient selenium hosting, leveraging the distinctive physicochemical properties. The catalytic features inherent in the porous Se@Fe-CNT/TiO2 nanoarchitecture were instrumental in promoting efficient ion and electron transport, and lithium-polyselenide kinetics, while its inherent porosity could play a crucial role in inhibiting electrode stress during cycling. This nanoarchitecture exhibits remarkable battery performance, retaining 99.7% of theoretical capacity after 425 cycles at 0.5 C rate and demonstrating 95.8% capacity retention after 2000 cycles at 1 C rate, with ∼100% Coulombic efficiency. Additionally, the Se@Fe-CNT/TiO2 electrode exhibited an impressive recovery of 297.5 mAh/g (97.9%) capacity after undergoing 450 cycles at a charging rate of 10 C and a discharging rate of 1 C. This synergistic integration of MOF- and MXene-derived materials unveils new possibilities for high-performance and durable LSeBs, thus advancing electrochemical energy storage systems.

3.
Sci Total Environ ; 927: 172368, 2024 Apr 12.
Artigo em Inglês | MEDLINE | ID: mdl-38614346

RESUMO

BACKGROUND: Disinfection byproducts (DBPs) have been shown to impair thyroid function in experimental models. However, epidemiological evidence is scarce. METHODS: This study included 1190 women undergoing assisted reproductive technology (ART) treatment from the Tongji Reproductive and Environmental (TREE) cohort from December 2018 to August 2021. Serum thyrotropin (TSH), free triiodothyronine (FT3), and free thyroxine (FT4) were measured as indicators of thyroid function. FT4/FT3 and TSH/FT4 ratios were calculated as markers of thyroid hormone homeostasis. Dichloroacetic acid (DCAA) and trichloroacetic acid (TCAA), the two most abundant HAAs, in urine were detected to assess individual DBP exposures. RESULTS: After adjusting for relevant covariates, positive associations were observed between urinary TCAA concentrations and serum TSH and TSH/FT4 levels (e.g., percent change = 5.82 %, 95 % CI: 0.70 %, 11.21 % for TSH), whereas inverse associations were found for serum FT3 and FT4 (e.g., percent change = -1.29 %, 95 % CI: -2.49 %, -0.07 % for FT3). There also was a negative association between urinary DCAA concentration and serum FT4/FT3 (percent change = -2.49 %, 95 % CI: -4.71 %, -0.23 %). These associations were further confirmed in the restricted cubic spline and generalized additive models with linear or U-shaped dose-response relationships. CONCLUSION: Urinary HAAs were associated with altered thyroid hormone homeostasis among women undergoing ART treatment.

4.
AMB Express ; 14(1): 35, 2024 Apr 13.
Artigo em Inglês | MEDLINE | ID: mdl-38615116

RESUMO

Endophytic bacteria are one of the symbiotic microbial groups closely related to host algae. However, less research on the endophytic bacteria of marine algae. In this study, the endophytic bacterial community of Sargassum thunbergii was investigated using the culture method and high-throughput sequencing. Thirty-nine endophytic bacterial strains, belonging to two phyla, five genera and sixteen species, were isolated, and Firmicutes, Bacillus and Metabacillus indicus were the dominant taxa at the phylum, genus and species level, respectively. High-throughput sequencing revealed 39 phyla and 574 genera of endophytic bacteria, and the dominant phylum was Proteobacteria, while the dominant genus was Ralstonia. The results also indicated that the endophytic bacteria of S. thunbergii included various groups with nitrogen fixation, salt tolerance, pollutant degradation, and antibacterial properties but also contained some pathogenic bacteria. Additionally, the endophytic bacterial community shared a large number of groups with the epiphytic bacteria and bacteria in the surrounding seawater, but the three groups of samples could be clustered separately. In conclusion, there are a variety of functional endophytic bacteria living in S. thunbergii, and the internal condition of algae is a selective factor for the formation of endophytic bacterial communities. This study enriched the database of endophytic bacteria in marine macroalgae, paving the way for further understanding of the interrelationships between endophytic bacteria, macroalgae, and the environment.

5.
ACS Omega ; 9(14): 16581-16591, 2024 Apr 09.
Artigo em Inglês | MEDLINE | ID: mdl-38617676

RESUMO

Sulfur-containing fuels, such as petroleum fuels, natural gas, and biofuels, produce SO2, SO3, and other highly toxic gases upon combustion, which are harmful to human health and the environment, making it essential to understand their thermochemical properties. This study used high-level quantum chemistry calculations to determine thermodynamic parameters, including entropy, enthalpy, and specific heat capacity for an extensive set of sulfur-containing species. The B3LYP/cc-pVTZ level of theory was used for geometry optimization, vibration frequency, and dihedral scan calculations. To determine an appropriate ab initio method for energy calculation, the Bland-Altman diagram, a statistical analysis method, was employed to visualize the 298 K enthalpy value between experimental data and three sets of ab initio methods: G3, CBS-QB3, and the average of G3 plus CBS-QB3. The CBS-QB3 method exhibited the highest accuracy and was eventually selected for the energy calculation in this study. Thermochemical property parameters were then calculated with the MultiWell program suite for all these sulfur-containing species, and the results were in good agreement with the thermochemical data of organic compounds and the National Institute of Standards and Technology Chemistry WebBook databases. The thermochemical property database established in this study is essential to studying sulfur-containing species in desulfurization.

6.
Hepatol Int ; 2024 Apr 16.
Artigo em Inglês | MEDLINE | ID: mdl-38622445

RESUMO

BACKGROUND: To investigate whether protein induced by vitamin K antagonist-II (PIVKA-II) combined with alpha-fetoprotein (AFP) can improve the diagnostic and differential diagnostic accuracy of childhood hepatic tumors. METHODS: A multi-center prospective observational study was performed at nine regional institutions around China. Children with hepatic mass (Group T) were divided into hepatoblastoma group (Group THB) and hemangioendothelioma group (Group THE), children with extrahepatic abdominal mass (Group C). Peripheral blood was collected from each patient prior to surgery or chemotherapy. The area under the curve (AUROC) was used to evaluate the diagnostic efficiency of PIVKA-II and the combined tumor markers with AFP. RESULTS: The mean levels of PIVKA-II and AFP were both significantly higher in Group T than Group C (p = 0.001, p < 0.001), in Group THB than Group THE (p = 0.018, p = 0.013) and in advanced HB than non-advanced HB (p = 0.001, p = 0.021). For the diagnosis of childhood hepatic tumors, AUROC of PIVKA-II (cut-off value 32.6 mAU/mL) and AFP (cut-off value 120 ng/mL) was 0.867 and 0.857. The differential diagnostic value of PIVKA-II and AFP in hepatoblastoma from hemangioendothelioma was further assessed, AUROC of PIVKA-II (cut-off value 47.1mAU/mL) and AFP (cut-off value 560 ng/mL) was 0.876 and 0.743. The combined markers showed higher AUROC (0.891, 0.895 respectively) than PIVKA-II or AFP alone. CONCLUSIONS: The serum level of PIVKA-II was significantly higher in children with hepatic tumors, especially those with malignant tumors. The combination of PIVKA-II with AFP further increased the diagnostic performance. TRIAL REGISTRATION: Clinical Trials, NCT03645655. Registered 20 August 2018, https://www. CLINICALTRIALS: gov/ct2/show/NCT03645655 .

7.
Analyst ; 2024 Apr 16.
Artigo em Inglês | MEDLINE | ID: mdl-38623605

RESUMO

Surface-enhanced Raman spectroscopy (SERS) has emerged as an indispensable analytical tool in biomolecular research, providing unmatched sensitivity critical for the elucidation of biomolecular structures. This review presents a thorough examination of SERS, outlining its fundamental principles, cataloging its varied applications within the biomolecular sphere, and contemplating its future developmental trajectories. We begin with a detailed analysis of SERS's mechanistic principles, emphasizing both the phenomena of surface enhancement and the complexities inherent in Raman scattering spectroscopy. Subsequently, we delve into the pivotal role of SERS in the structural analysis of diverse biomolecules, including proteins, nucleic acids, lipids, carbohydrates, and biochromes. The remarkable capabilities of SERS extend beyond mere detection, offering profound insights into biomolecular configurations and interactions, thereby enriching our comprehension of intricate biological processes. This review also sheds light on the application of SERS in real-time monitoring of various bio-relevant compounds, from enzymes and coenzymes to metal ion-chelate complexes and cellular organelles, thereby providing a holistic view and empowering researchers to unravel the complexities of biological systems. We also address the current challenges faced by SERS, such as enhancing sensitivity and resolution, developing stable and reproducible substrates, and conducting thorough analyses in complex biological matrices. Nonetheless, the continual advancements in nanotechnology and spectroscopy solidify the standing of SERS as a formidable force in biomolecular research. In conclusion, the versatility and robustness of SERS not only deepen our understanding of biomolecular intricacies but also pave the way for significant developments in medical research, therapeutic innovation, and diagnostic approaches.

9.
Natl Sci Rev ; 11(4): nwae063, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38623453

RESUMO

The Chinese Bayan Obo deposit is a world-class rare earth element (REE) deposit with considerable niobium (Nb) and iron (Fe) resources. A complete genetic understanding on all metals is fundamental for establishing genetic models at Bayan Obo. With extensive research being focused on REE enrichment, the timing and controls of Nb enrichment remain unresolved at Bayan Obo, which is mainly due to the challenges in dating, i.e. multistage thermal events, fine-grained minerals with complex textures and the rare occurrence of uranium-enriched minerals with mature dating methods. Based on robust geological and petrographic frameworks, here we conducted ion probe uranium-lead (U-Pb) dating of ferrocolumbite to unravel the timing, hence the genesis of Nb mineralization. Three types of hydrothermal ferrocolumbites-key Nb-bearing minerals-are identified based on their textures and mineral assemblages. They yield U-Pb ages of 1312 ± 47 Ma (n = 99), 438 ± 7 Ma (n = 93), and 268 ± 5 Ma (n = 19), respectively. In line with deposit geology, we tentatively link the first, second and third stage Nb mineralization to Mesoproterozoic carbonatite magmatism, ubiquitous early Paleozoic hydrothermal activity, and Permian granitic magmatism, respectively. While quantifying the contribution of metal endowment from each stage requires further investigation, our new dates highlight that multi-stage mineralization is critical for Nb enrichment at Bayan Obo, which may also have implications for the enrichment mechanism of Nb in REE deposits in general.

10.
Res Pract Thromb Haemost ; 8(3): 102375, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38623472

RESUMO

Background: The optimal perioperative antithrombotic strategy for patients with acute coronary syndrome (ACS) during percutaneous coronary intervention (PCI) remains controversial. Objectives: To determine the safety and effectiveness of bivalirudin plus ticagrelor vs bivalirudin plus clopidogrel in patients with ACS undergoing PCI in the real world. Methods: Between March 2016 and March 2019, 7234 patients with ACS who had undergone PCI, received bivalirudin periprocedurally, and were prescribed ticagrelor or clopidogrel were enrolled in a single-center, all-comer, modern, retrospective cohort study. Incidence rates of 12-month ischemia (cardiac death, myocardial infarction, or stroke), all-cause death, Bleeding Academic Research Consortium (BARC) type 2,3,5 bleeding, and BARC type 3,5 bleeding were compared between different groups. Results: In total, 4960 patients received bivalirudin plus clopidogrel and 2274 patients received bivalirudin plus ticagrelor. Compared with bivalirudin plus clopidogrel, bivalirudin plus ticagrelor was associated with lower ischemic events (1.74% vs 2.84%; relative risk, 0.61; 95% CI, 0.41-0.91; P = .02) and stroke (0.05% vs 1.01%, P < .001) within 12 months after PCI without excessive risk of bleeding (BARC type 2,3,5 bleeding: 4.49% vs 3.76%, P = .22; BARC type 3,5 bleeding: 2.84% vs 2.02%, P = .08). The beneficial effects of bivalirudin plus ticagrelor were consistent among subgroups. Conclusion: As an initial treatment strategy, bivalirudin plus ticagrelor could reduce the 12-month risk of ischemic events compared with bivalirudin plus clopidogrel significantly without increasing the bleeding risk in ACS patients undergoing PCI.

11.
Heliyon ; 10(8): e28543, 2024 Apr 30.
Artigo em Inglês | MEDLINE | ID: mdl-38628704

RESUMO

Objective: Individual differences were observed in the clinical efficacy of Botulinum toxin A (BoNT-A) in the treatment of the primary Meige syndrome. Our study aimed to explore the potential associations between the clinical efficacy of BoNT-A in the treatment of the primary Meige syndrome and variants of SNAP25, SV2C and ST3GAL2, which are involving in the translocation of the BoNT-A in vivo. Methods: Patients with the primary Meige syndrome treated with BoNT-A were enrolled. Clinical efficacy was evaluated by the maximum improvement rate of motor symptoms and the duration of efficacy. Variants of SNAP25, SV2C and ST3GAL2 were obtained by Sanger sequencing. Another cohort diagnosed with primary cervical dystonia was also enrolled in the replication stage. Results: Among the 104 primary Meige syndrome patients, 80 patients (76.9%) had a good efficacy (the maximum improvement rate of motor symptoms ≥30%) and 24 (23. 1%) had a poor (the maximum improvement rate of motor symptoms <30%). As to the duration of efficacy, 52 patients (50.0%) had a long duration of efficacy (≥4 months), and 52 (50.0%) had a short (<4 months). In terms of primary Meige syndrome, SNAP25 rs6104571 was found associating with the maximum improvement rate of motor symptoms (Genotype: P = 0.02, OR = 0.26; Allele: P = 0.013, OR = 0.29), and SV2C rs31244 was found associating with the duration of efficacy (Genotype: P = 0.024, OR = 0.13; Allele: P = 0.012, OR = 0.13). Besides, we also conducted the association analyses between the variants and BoNT-A-related adverse reactions. Although, there was no statistical difference between the allele of SV2C rs31244 and BoNT-A-related adverse reactions, there was a trend (P = 0.077, OR = 2.56). In the replication stage, we included 39 patients with primary cervical dystonia to further expanding the samples' size. Among the 39 primary cervical dystonia patients, 25 patients (64.1%) had a good efficacy (the maximum improvement rate of motor symptoms ≥50%) and 14 (35.9%) had a poor (the maximum improvement rate of motor symptoms <50%). As to the duration of efficacy, 32 patients (82.1%) had a long duration of efficacy (≥6 months), and 7 (17.9%) had a short (<6 months). Integrating primary Meige syndrome and primary cervical dystonia, SV2C rs31244 was still found associating with the duration of efficacy (Genotype: P = 0.002, OR = 0. 23; Allele: P = 0.001, OR = 0. 25). Conclusion: In our study, SNAP25 rs6104571 was associated with the maximum improvement rate of motor symptoms in patients with primary Meige syndrome treated with BoNT-A, and patients carrying this variant had a lower improvement rate of motor symptoms. SV2C rs31244 was associated with duration of treatment in patients with primary Meige syndrome treated with BoNT-A and patients carrying this variant had a shorter duration of treatment. Patients with primary Meige syndrome carrying SV2C rs31244 G allele have an increase likelihood of BoNT-A-related adverse reactions. Involving 39 patients with primary cervical dystonia, the results further verify that SV2C rs31244 was associated with duration of treatment and patients carrying this variant had a shorter duration of treatment.

12.
Comput Methods Programs Biomed ; 250: 108125, 2024 Mar 20.
Artigo em Inglês | MEDLINE | ID: mdl-38631130

RESUMO

BACKGROUND AND OBJECTIVES: Automatic tumor segmentation plays a crucial role in cancer diagnosis and treatment planning. Computed tomography (CT) and positron emission tomography (PET) are extensively employed for their complementary medical information. However, existing methods ignore bilateral cross-modal interaction of global features during feature extraction, and they underutilize multi-stage tumor boundary features. METHODS: To address these limitations, we propose a dual-branch tumor segmentation network based on global cross-modal interaction and boundary guidance in PET/CT images (DGCBG-Net). DGCBG-Net consists of 1) a global cross-modal interaction module that extracts global contextual information from PET/CT images and promotes bilateral cross-modal interaction of global feature; 2) a shared multi-path downsampling module that learns complementary features from PET/CT modalities to mitigate the impact of misleading features and decrease the loss of discriminative features during downsampling; 3) a boundary prior-guided branch that extracts potential boundary features from CT images at multiple stages, assisting the semantic segmentation branch in improving the accuracy of tumor boundary segmentation. RESULTS: Extensive experiments are conducted on STS and Hecktor 2022 datasets to evaluate the proposed method. The average Dice scores of our DGCB-Net on the two datasets are 80.33% and 79.29%, with average IOU scores of 67.64% and 70.18%. DGCB-Net outperformed the current state-of-the-art methods with a 1.77% higher Dice score and a 2.12% higher IOU score. CONCLUSIONS: Extensive experimental results demonstrate that DGCBG-Net outperforms existing segmentation methods, and is competitive to state-of-arts.

13.
Biomed Pharmacother ; 174: 116543, 2024 Apr 11.
Artigo em Inglês | MEDLINE | ID: mdl-38608523

RESUMO

In recent years, there has been an increasing number of related studies on exosomes. Most studies have focused on exosomes derived from mammals, confirming the important role that exosomes play in cell communication. Plants, as a natural ingredient, plant-derived exosomes have been confirmed to have similar structures and functions to mammalian-derived exosomes. Plant-derived exosome-like nanoparticles (PELNs) are lipid bilayer membrane nanovesicles containing bioactive constituents such as miRNA, mRNA, protein, and lipids obtained from plant cells, that can participate in intercellular communication and mediate transboundary communication, have high bioavailability and low immunogenicity, are relatively safe, and have been shown to play an important role in maintaining cell homeostasis and preventing, and treating a variety of diseases. In this review, we describe the biogenesis, isolation and purification methods, structural composition, stability, safety, function of PELNs and challenges. The functions of PELNs in anti-inflammatory, antioxidant, antitumor and drug delivery are mainly described, and the status of research on exosome nanoparticles of Chinese herbal medicines is outlined. Overall, we summarized the importance of PELNs and the latest research results in this field and provided a theoretical basis for the future research and clinical application of PELNs.

14.
Environ Res ; : 118825, 2024 Apr 10.
Artigo em Inglês | MEDLINE | ID: mdl-38609072

RESUMO

Human fertility is impacted by changes in lifestyle and environmental deterioration. To increase human fertility, assisted reproductive technology (ART) has been extensively used around the globe. As early as 2009, the Endocrine Society released its first scientific statement on the potential adverse effects of environmental endocrine-disrupting chemicals (EDCs) on human health and disease development. Chemicals known as phthalates, frequently employed as plasticizers and additives, are common EDCs. Numerous studies have shown that phthalate metabolites in vivo exert estrogen-like or anti-androgenic effects in both humans and animals. They are associated with the progression of a range of diseases, most notably interference with the reproductive process, damage to the placenta, and the initiation of chronic diseases in adulthood. Phthalates are ingested by infertile couples in a variety of ways, including household products, diet, medical treatment, etc. Exposure to phthalates may exacerbate their infertility or poor ART outcomes, however, the available data on phthalate exposure and ART pregnancy outcomes are sparse and contradictory. Therefore, this review conducted a systematic evaluation of 16 papers related to phthalate exposure and ART pregnancy outcomes, to provide more aggregated results, and deepen our understanding of reproductive outcomes in infertile populations with phthalate exposure.

15.
J Environ Manage ; 358: 120888, 2024 Apr 13.
Artigo em Inglês | MEDLINE | ID: mdl-38615399

RESUMO

Oil dispersion, a crucial process in oil transport, involves the detachment of oil droplets from slicks and their introduction into the water column, influencing subsequent oil migration and transformation. This study examines oil dispersion, considering characteristics, stability, and mechanisms, while evaluating the impact of dispersants and salinity. Results show the significant role of surfactant type in dispersants on oil dispersion characteristics, with anionic surfactants exhibiting higher sensitivity to salinity changes compared to nonionic surfactants. The dispersion efficiency varies with salinity, with anionic surfactants performing better in low salinity (<20‰) and nonionic surfactants showing superior performance at 30-35‰ salinities. Rheological analysis illustrates the breakup and coalescence of oil droplets within the shear rates of breaking waves. An increase in interfacial film rigidity impedes the coalescence of oil droplets, contributing to the dynamic stability of the oil-water hybrid system. The use of GM-2, a nonionic dispersant, results in the formation of a solid-like interface, characterized by increased elastic modulus, notably at 20‰ salinity. However, stable droplet size distribution (DSD) at 35‰ salinity for 60 h suggests droplets can remain dispersed in seawater. The enhancement of stability of oil dispersion is interpreted as the result of two mechanisms: stabilizing DSD and developing the strength of viscoelastic interfacial film. These findings offer insights into oil dispersion dynamics, highlighting the importance of surfactant selection and salinity in governing dispersion behavior, and elucidating mechanisms underlying dispersion stability.

17.
J Asian Nat Prod Res ; : 1-12, 2024 Apr 17.
Artigo em Inglês | MEDLINE | ID: mdl-38629733

RESUMO

Bicyclol is a hepatoprotective agent widely used for treating chronic hepatitis and drug-induced liver injuries in clinics. The purpose of the study was to elucidate the contribution of CYP450 enzymes to the metabolism of bicyclol using the relative activity factor approach. After incubation with human liver microsomes and recombinant human liver CYP450 enzymes, the calculated contribution of CYP3A4 and 2C19 to the metabolism of bicyclol was 85.6-90.3% and 9.2-9.7%, respectively. The metabolism was interrupted in the presence of CYP3A4 and 2C19 selective inhibitors. These findings help to predict or avoid metabolic drug-drug interactions or toxicity in clinical applications of bicyclol.

18.
Sensors (Basel) ; 24(7)2024 Mar 29.
Artigo em Inglês | MEDLINE | ID: mdl-38610415

RESUMO

In Vehicular Edge Computing Network (VECN) scenarios, the mobility of vehicles causes the uncertainty of channel state information, which makes it difficult to guarantee the Quality of Service (QoS) in the process of computation offloading and the resource allocation of a Vehicular Edge Computing Server (VECS). A multi-user computation offloading and resource allocation optimization model and a computation offloading and resource allocation algorithm based on the Deep Deterministic Policy Gradient (DDPG) are proposed to address this problem. Firstly, the problem is modeled as a Mixed Integer Nonlinear Programming (MINLP) problem according to the optimization objective of minimizing the total system delay. Then, in response to the large state space and the coexistence of discrete and continuous variables in the action space, a reinforcement learning algorithm based on DDPG is proposed. Finally, the proposed method is used to solve the problem and compared with the other three benchmark schemes. Compared with the baseline algorithms, the proposed scheme can effectively select the task offloading mode and reasonably allocate VECS computing resources, ensure the QoS of task execution, and have a certain stability and scalability. Simulation results show that the total completion time of the proposed scheme can be reduced by 24-29% compared with the existing state-of-the-art techniques.

19.
Foods ; 13(7)2024 Mar 28.
Artigo em Inglês | MEDLINE | ID: mdl-38611343

RESUMO

Soluble solids content (SSC) is one of the main quality indicators of apples, and it is important to improve the precision of online SSC detection of whole apple fruit. Therefore, the spectral pre-processing method of spectral-to-spectral ratio (S/S), as well as multiple characteristic wavelength member model fusion (MCMF) and characteristic wavelength and non-characteristic wavelength member model fusion (CNCMF) methods, were proposed for improving the detection performance of apple whole fruit SSC by diffuse reflection (DR), diffuse transmission (DT) and full transmission (FT) spectra. The modeling analysis showed that the S/S- partial least squares regression models for all three mode spectra had high prediction performance. After competitive adaptive reweighted sampling characteristic wavelength screening, the prediction performance of all three model spectra was improved. The particle swarm optimization-extreme learning machine models of MCMF and CNCMF had the most significant enhancement effect and could make all three mode spectra have high prediction performance. DR, DT, and FT spectra all had some prediction ability for apple whole fruit SSC, with FT spectra having the strongest prediction ability, followed by DT spectra. This study is of great significance and value for improving the accuracy of the online detection model of apple whole fruit SSC.

20.
Acc Chem Res ; 57(8): 1174-1187, 2024 Apr 16.
Artigo em Inglês | MEDLINE | ID: mdl-38557015

RESUMO

ConspectusSupramolecular coordination complexes (SCCs) are predictable and size-tunable supramolecular self-assemblies constructed through directional coordination bonds between readily available organic ligands and metallic receptors. Based on planar and 3D structures, SCCs can be mainly divided into two categories: metallacycles (e.g., rhomboidal, triangular, rectangular, and hexagonal) and metallacages (e.g., tetrahedral, hexahedral, and dodecahedral). The directional coordination bonds enable the efficient formation of metallacycles and metallacages with well-defined architectures and geometries. SCCs exhibit several advantages, including good directionality, strong interaction force, tunable modularity, and good solution processability, making them highly attractive for biomedical applications, especially in cellular imaging and cancer therapy. Compared with their molecular precursors, SCCs demonstrate enhanced cellular uptake and a strengthened tumor accumulation effect, owing to their inherently charged structures. These properties and the chemotherapeutic potential inherent to organic platinum complexes have promoted their widespread application in antitumor therapy. Furthermore, the defined structures of SCCs, achieved via the design modification of assembly elements and introduction of different functional groups, enable them to combat malignant tumors through multipronged treatment modalities. Because the development of cancer-treatment methodologies integrated in clinics has evolved from single-modality chemotherapy to synergistic multimodal therapy, the development of functional SCCs for synergistic cancer therapy is crucial. While some pioneering reviews have explored the bioapplications of SCCs, often categorized by a specific function or focusing on the specific metal or ligand types, a comprehensive exploration of their synergistic multifunctionality is a critical gap in the current literature.In this Account, we focus on platinum-based SCCs and their applications in cancer therapy. While other metals, such as Pd-, Rh-, Ru-, and Ir-based SCCs, have been explored for cancer therapy by Therrien and Casini et al., platinum-based SCCs have garnered significant interest, owing to their unique advantages in antitumor therapy. These platinum-based SCCs, which enhance antitumor efficacy, are considered prominent candidates for cancer therapies owing to their desirable properties, such as potent antitumor activity, exceptionally low systemic toxicity, active tumor-targeting ability, and enhanced cellular uptake. Furthermore, diverse diagnostic and therapeutic modalities (e.g., chemotherapy, photothermal therapy, and photodynamic therapy) can be integrated into a single platform based on platinum-based SCCs for cancer therapy. Consequently, herein, we summarize our recent research on platinum-based SCCs for synergistic cancer therapy with particular emphasis on the cooperative interplay between different therapeutic methods. In the Conclusions section, we present the key advancements achieved on the basis of our research findings and propose future directions that may significantly impact the field.


Assuntos
Complexos de Coordenação , Neoplasias , Humanos , Complexos de Coordenação/farmacologia , Complexos de Coordenação/uso terapêutico , Complexos de Coordenação/química , Neoplasias/tratamento farmacológico , Platina/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...